Ensembles finis Exemples

Resolva para x racine quatrième de 12x^2-35=x
Étape 1
Pour retirer le radical du côté gauche de l’équation, élevez les deux côtés de l’équation à la puissance .
Étape 2
Simplifiez chaque côté de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Utilisez pour réécrire comme .
Étape 2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.2.1.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1.2.1
Annulez le facteur commun.
Étape 2.2.1.1.2.2
Réécrivez l’expression.
Étape 2.2.1.2
Simplifiez
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Soustrayez des deux côtés de l’équation.
Étape 3.2
Remplacez dans l’équation. Cela facilitera l’utilisation de la formule quadratique.
Étape 3.3
Factorisez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.1
Factorisez à partir de .
Étape 3.3.1.2
Factorisez à partir de .
Étape 3.3.1.3
Réécrivez comme .
Étape 3.3.1.4
Factorisez à partir de .
Étape 3.3.1.5
Factorisez à partir de .
Étape 3.3.2
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 3.3.2.1.2
Écrivez la forme factorisée avec ces entiers.
Étape 3.3.2.2
Supprimez les parenthèses inutiles.
Étape 3.4
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 3.5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.5.1
Définissez égal à .
Étape 3.5.2
Ajoutez aux deux côtés de l’équation.
Étape 3.6
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.6.1
Définissez égal à .
Étape 3.6.2
Ajoutez aux deux côtés de l’équation.
Étape 3.7
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3.8
Remplacez à nouveau la valeur réelle de dans l’équation résolue.
Étape 3.9
Résolvez la première équation pour .
Étape 3.10
Résolvez l’équation pour .
Appuyez ici pour voir plus d’étapes...
Étape 3.10.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 3.10.2
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 3.10.2.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 3.10.2.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 3.10.2.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3.11
Résolvez la deuxième équation pour .
Étape 3.12
Résolvez l’équation pour .
Appuyez ici pour voir plus d’étapes...
Étape 3.12.1
Supprimez les parenthèses.
Étape 3.12.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 3.12.3
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 3.12.3.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 3.12.3.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 3.12.3.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3.13
La solution à est .
Étape 4
Excluez les solutions qui ne rendent pas vrai.
Étape 5
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :